TMB Documentation  v1.9.11
TMBad/spa_gauss.cpp
// Demonstrate saddlepoint approximation (SPA)
#include <TMB.hpp>
// Define the ad type needed
typedef TMBad::ad_aug ad;
struct spa_gauss {
vector<ad> y; // Data
ad mu, sigma; // Parameters
// Return K_y(s)-s^T y
// K_y(s) = sum K_{y[i]}(s[i])
// K_N(mu, sigma)(s) = mu*s + sigma^2 * s^2 / 2
ad operator()(vector<ad> s) {
int n = s.size();
// Build CGF
ad K = 0;
for(int i=0; i<n; i++){
K += mu * s(i) + 0.5 * s(i) * s(i) * sigma * sigma;
}
// Build inner problem
ad res = K - (s*y).sum();
return res;
}
// Type can by 'ad' or 'double'
template<class Type>
Type eval_nldens(vector<Type> &start) {
cfg.SPA = true;
cfg.sparse = true;
cfg.trace = false; // Trace inner optimize?
Type res = newton::Laplace(*this, start, cfg);
return res;
}
};
template<class Type>
Type objective_function<Type>::operator() ()
{
DATA_VECTOR(s); // saddlepoint initial guess
PARAMETER(mu);
PARAMETER(logSigma);
Type sigma = exp(logSigma);
spa_gauss spa = {y, mu, sigma};
// s = start guess on input
// overwritten with solution on output
Type res = spa.eval_nldens(s);
// report saddlepoint and sigma
REPORT(s); // sd not needed
ADREPORT(sigma);
return res;
}
License: GPL v2