| 
    TMB Documentation
    v1.9.11
    
   | 
 
Probability distribution functions. More...
Go to the source code of this file.
Functions | |
| template<class Type > | |
| Type | besselI (Type x, Type nu) | 
| besselI function (same as besselI from R).  More... | |
| template<class Type > | |
| Type | besselJ (Type x, Type nu) | 
| besselJ function (same as besselJ from R).  More... | |
| template<class Type > | |
| Type | besselK (Type x, Type nu) | 
| besselK function (same as besselK from R).  More... | |
| template<class Type > | |
| Type | besselY (Type x, Type nu) | 
| besselY function (same as besselY from R).  More... | |
| template<class Type > | |
| Type | compois_calc_loglambda (Type logmean, Type nu) | 
| Conway-Maxwell-Poisson. Calculate log(lambda) from log(mean).  More... | |
| template<class Type > | |
| Type | compois_calc_logZ (Type loglambda, Type nu) | 
| Conway-Maxwell-Poisson log normalizing constant.  More... | |
| template<class Type > | |
| Type | dbeta (Type x, Type shape1, Type shape2, int give_log) | 
| Probability density function of the beta distribution.  More... | |
| template<class Type > | |
| Type | dbinom (Type k, Type size, Type prob, int give_log=0) | 
| Probability mass function of the binomial distribution.  More... | |
| template<class Type > | |
| Type | dbinom_robust (Type k, Type size, Type logit_p, int give_log=0) | 
| Density of binomial distribution parameterized via logit(prob)  More... | |
| template<class T1 , class T2 , class T3 > | |
| T1 | dcompois (T1 x, T2 mode, T3 nu, int give_log=0) | 
| Conway-Maxwell-Poisson. Calculate density.  More... | |
| template<class T1 , class T2 , class T3 > | |
| T1 | dcompois2 (T1 x, T2 mean, T3 nu, int give_log=0) | 
| Conway-Maxwell-Poisson. Calculate density parameterized via the mean.  More... | |
| template<class Type > | |
| Type | df (Type x, Type df1, Type df2, int give_log) | 
| Probability density function of the Fisher distribution.  More... | |
| template<class Type > | |
| Type | dlogis (Type x, Type location, Type scale, int give_log) | 
| Probability density function of the logistic distribution.  More... | |
| template<class Type > | |
| Type | dmultinom (vector< Type > x, vector< Type > p, int give_log=0) | 
| Probability mass function of the multinomial distribution.  More... | |
| template<class Type > | |
| Type | dsn (Type x, Type alpha, int give_log=0) | 
| Probability density function of the skew-normal distribution.  More... | |
| template<class Type > | |
| Type | dt (Type x, Type df, int give_log) | 
| Probability density function of the Student t-distribution.  More... | |
| template<class Type > | |
| Type | dtweedie (Type y, Type mu, Type phi, Type p, int give_log=0) | 
| dtweedie function (same as dtweedie.series from R package 'tweedie').  More... | |
| template<class Type > | |
| Type | pbeta (Type q, Type shape1, Type shape2) | 
| Distribution function of the beta distribution (following R argument convention).  More... | |
| template<class Type > | |
| Type | pgamma (Type q, Type shape, Type scale=1.) | 
| Distribution function of the gamma distribution (following R argument convention).  | |
| template<class Type > | |
| Type | pnorm (Type q, Type mean=0., Type sd=1.) | 
| Distribution function of the normal distribution (following R argument convention).  | |
| template<class Type > | |
| Type | ppois (Type q, Type lambda) | 
| Distribution function of the poisson distribution (following R argument convention).  | |
| template<class Type > | |
| Type | qbeta (Type p, Type shape1, Type shape2) | 
| Quantile function of the beta distribution (following R argument convention).  More... | |
| template<class Type > | |
| Type | qgamma (Type q, Type shape, Type scale=1.) | 
| Quantile function of the gamma distribution (following R argument convention).  | |
| template<class Type > | |
| Type | qnorm (Type p, Type mean=0., Type sd=1.) | 
| Quantile function of the normal distribution (following R argument convention).  | |
| template<class Type > | |
| Type | rbeta (Type shape1, Type shape2) | 
| Simulate from a beta distribution.  | |
| template<class Type > | |
| Type | rbinom (Type size, Type prob) | 
| Simulate from a binomial distribution.  | |
| template<class Type > | |
| Type | rcompois (Type mode, Type nu) | 
| Simulate from a Conway-Maxwell-Poisson distribution.  | |
| template<class Type > | |
| Type | rcompois2 (Type mean, Type nu) | 
| Simulate from a Conway-Maxwell-Poisson distribution.  | |
| template<class Type > | |
| Type | rexp (Type rate) | 
| Simulate from an exponential distribution.  | |
| template<class Type > | |
| Type | rf (Type df1, Type df2) | 
| Simulate from an F distribution.  | |
| template<class Type > | |
| Type | rgamma (Type shape, Type scale) | 
| Simulate from a gamma distribution.  | |
| template<class Type > | |
| Type | rlogis (Type location, Type scale) | 
| Simulate from a logistic distribution.  | |
| template<class Type > | |
| Type | rnorm (Type mu, Type sigma) | 
| Simulate from a normal distribution.  | |
| template<class Type > | |
| Type | rpois (Type mu) | 
| Simulate from a Poisson distribution.  | |
| template<class Type > | |
| Type | rt (Type df) | 
| Simulate from a Student's t distribution.  | |
| template<class Type > | |
| Type | rtweedie (Type mu, Type phi, Type p) | 
| Simulate from tweedie distribution.  | |
| template<class Type > | |
| Type | runif (Type a, Type b) | 
| Simulate from a uniform distribution.  | |
| template<class Type > | |
| Type | rweibull (Type shape, Type scale) | 
| Simulate from a Weibull distribution.  | |
Exponential distribution.  | |
Functions relative to the exponential distribution.  | |
| template<class Type > | |
| Type | pexp (Type x, Type rate) | 
| Cumulative distribution function of the exponential distribution.  More... | |
| template<class Type > | |
| Type | dexp (Type x, Type rate, int give_log=0) | 
| Probability density function of the exponential distribution.  More... | |
| template<class Type > | |
| Type | qexp (Type p, Type rate) | 
| Inverse cumulative distribution function of the exponential distribution.  More... | |
Weibull distribution.  | |
Functions relative to the Weibull distribution.  | |
| template<class Type > | |
| Type | pweibull (Type x, Type shape, Type scale) | 
| Cumulative distribution function of the Weibull distribution.  More... | |
| template<class Type > | |
| Type | dweibull (Type x, Type shape, Type scale, int give_log=0) | 
| Probability density function of the Weibull distribution.  More... | |
| template<class Type > | |
| Type | qweibull (Type p, Type shape, Type scale) | 
| Inverse cumulative distribution function of the Weibull distribution.  More... | |
Sinh-asinh distribution.  | |
Functions relative to the sinh-asinh distribution.  | |
| template<class Type > | |
| Type | dSHASHo (Type x, Type mu, Type sigma, Type nu, Type tau, int give_log=0) | 
| Probability density function of the sinh-asinh distribution.  More... | |
| template<class Type > | |
| Type | pSHASHo (Type q, Type mu, Type sigma, Type nu, Type tau, int give_log=0) | 
| Cumulative distribution function of the sinh-asinh distribution.  More... | |
| template<class Type > | |
| Type | qSHASHo (Type p, Type mu, Type sigma, Type nu, Type tau, int log_p=0) | 
| Quantile function of the sinh-asinh distribution.  More... | |
| template<class Type > | |
| Type | norm2SHASHo (Type x, Type mu, Type sigma, Type nu, Type tau, int log_p=0) | 
| Transforms a normal variable into a sinh-asinh variable.  More... | |
Probability distribution functions.
Definition in file distributions_R.hpp.
| Type compois_calc_loglambda | ( | Type | logmean, | 
| Type | nu | ||
| ) | 
Conway-Maxwell-Poisson. Calculate log(lambda) from log(mean).
| logmean | \( \log(E[X]) \) | 
| nu | \( \nu \) | 
Definition at line 604 of file distributions_R.hpp.
| Type compois_calc_logZ | ( | Type | loglambda, | 
| Type | nu | ||
| ) | 
Conway-Maxwell-Poisson log normalizing constant.
\[ Z(\lambda, \nu) = \sum_{i=0}^{\infty} \frac{\lambda^i}{(i!)^\nu} \]
.
| loglambda | \( \log(\lambda) \) | 
| nu | \( \nu \) | 
Definition at line 586 of file distributions_R.hpp.