TMB Documentation
v1.9.11
|
Univariate and multivariate numerical integration. More...
Functions | |
template<class Type , class F > | |
Type | integrate (F f, Type a, Type b, int n=7, int p=2) |
1D numerical integration using Romberg's method. More... | |
template<class Type , class F > | |
Type | integrate (F f, vector< Type > a, vector< Type > b, int n=7, int p=2) |
Multi-dimensional numerical integration using Romberg's method. Dimension need not be known at compile time. More... | |
Univariate and multivariate numerical integration.
Type romberg::integrate | ( | F | f, |
Type | a, | ||
Type | b, | ||
int | n = 7 , |
||
int | p = 2 |
||
) |
1D numerical integration using Romberg's method.
f | Univariate functor |
a | Lower scalar integration limit |
b | Upper scalar integration limit |
n | Subdivisions ( \(2^{n-1}+1\) function evaluations). |
Example:
Definition at line 52 of file romberg.hpp.
Type romberg::integrate | ( | F | f, |
vector< Type > | a, | ||
vector< Type > | b, | ||
int | n = 7 , |
||
int | p = 2 |
||
) |
Multi-dimensional numerical integration using Romberg's method. Dimension need not be known at compile time.
f | Multivariate functor |
a | Lower vector integration limit |
b | Upper vector integration limit |
n | Subdivisions per dimension ( \((2^{n-1}+1)^d\) function evaluations). |
Example:
Definition at line 154 of file romberg.hpp.