TMB Documentation  v1.9.11
Classes | Namespaces | Macros | Functions
density.hpp File Reference

Classes to construct multivariate negative log Gaussian density objects. More...

Go to the source code of this file.

Classes

class  density::AR1_t< distribution >
 Stationary AR1 process. More...
 
class  density::ARk_t< scalartype_ >
 Stationary AR(k) process. More...
 
class  density::contAR2_t< scalartype_ >
 Continuous AR(2) process. More...
 
class  density::GMRF_t< scalartype_ >
 Gaussian Markov Random Field. More...
 
class  density::MVNORM_t< scalartype_ >
 Multivariate normal distribution with user supplied covariance matrix. More...
 
class  density::N01< scalartype_ >
 Standardized normal distribution. More...
 
class  density::PROJ_t< distribution >
 Projection of multivariate gaussian variable. More...
 
class  density::SCALE_t< distribution >
 Apply scale transformation on a density. More...
 
class  density::SEPARABLE_t< distribution1, distribution2 >
 Separable extension of two densitites. More...
 
class  density::UNSTRUCTURED_CORR_t< scalartype_ >
 Multivariate normal distribution with unstructered correlation matrix. More...
 
class  density::VECSCALE_t< distribution >
 Apply a vector scale transformation on a density. More...
 

Namespaces

 density
 Collection of multivariate Gaussian distributions (members listed in density.hpp)
 

Macros

#define SIMULATE_NOT_YET_IMPLEMENTED
 

Functions

template<class scalartype >
GMRF_t< scalartype > density::GMRF (Eigen::SparseMatrix< scalartype > Q, int order, bool normalize=true)
 Construct object to evaluate density of Gaussian Markov Random Field (GMRF) for sparse Q. More...
 
template<class scalartype >
MVNORM_t< scalartype > density::MVNORM (matrix< scalartype > Sigma, bool use_atomic=true)
 Construct object to evaluate multivariate zero-mean normal density with user supplied covariance matrix. More...
 
template<class distribution1 , class distribution2 >
SEPARABLE_t< distribution1, distribution2 > density::SEPARABLE (distribution1 f_, distribution2 g_)
 Construct object to evaluate the separable extension of two multivariate zero-mean normal densities. See SEPARABLE_t for details. More...
 
template<class scalartype >
UNSTRUCTURED_CORR_t< scalartype > density::UNSTRUCTURED_CORR (vector< scalartype > x)
 Construct object to evaluate the density with unstructured correlation matrix. See UNSTRUCTURED_CORR_t for details.
 
template<class vectortype , class distribution >
VECSCALE_t< distribution > density::VECSCALE (distribution f_, vectortype scale_)
 Construct object to evaluate a scaled density. See VECSCALE_t for details.
 

Detailed Description

Classes to construct multivariate negative log Gaussian density objects.

Note
These density classes return the negative log likelihood.

Definition in file density.hpp.

Macro Definition Documentation

§ SIMULATE_NOT_YET_IMPLEMENTED

#define SIMULATE_NOT_YET_IMPLEMENTED
Value:
private: \
vectortype sqrt_cov_scale(vectortype x){} \
void simulate(vectortype &u){} \
vectortype simulate(){} \
public:

Conventions for simulation:

Definition at line 54 of file density.hpp.

License: GPL v2